Mutation bias can obscure signals of selection on codon usage Ahmed Abdellatif; Alexander L. Cope, PhD; Premal Shah, PhD Department of Genetics, Rutgers University—New Brunswick

INTRODUCTION

- Codon usage bias (CUB): non-uniform usage of synonymous codons
 - Histidine: CAT 64%, CAC 36%
 - Glutamine: CAA 69%, CAG 31%
- Evolutionary forces shape CUB:
 - Mutation Bias
 - Natural Selection for Translation Efficiency/Accuracy
- Key point: Codon usage covaries with gene expression

OBJECTIVE

Quantify across-species variation in codon usage bias

- Separate effects of natural selection and mutation biases
- Use an evolutionary theory-based approach

METHODS

- Examined coding sequences of 49 yeast species
- Predicting gene expression from codon usage
- Expect correlation: no correlation suggests selection is not strong enough to shape codon usage
- Using a clustering approach:
 - Identify genes evolving under different mutational biases
- Clusters: "lower" & "higher" GC3% content
 - Based on avg. freq. of <u>GC nts @ the 3rd codon position</u>
- Evolutionary model: ROC-SEMPPR Allows genes to differ in mutation bias by cluster Ο
- Use the AnaCoDa R package¹

(C) Comparison of predicted expression estimates between the two models.

chromosomes in some species.

Variation in GC3% is clustered along